# Interaction between Unlike Nonpolar Molecules: Correction of the Geometric Mean Rule

Part 2. Dilute Systems

#### E. SONNICH THOMSEN

The Royal Danish School of Pharmacy, Chemical Laboratory A, 2100 Copenhagen Ø, Denmark

Equations for correcting the geometric mean rule are established from published values of the attraction coefficients for dispersion forces and experimental correction factors for unlike critical temperatures. For the 131 systems examined (composed of noble gases, hydrogen, nitrogen, oxygen, carbon monoxide, normal and branched alkanes, cyclohexane, aromatic hydrocarbons, carbon tetrafluoride, and monochlorodifluoromethane) it is possible to account for the correction factors with almost the same precision as the original data used.

The preceding paper 1 gave the basic formulae for correcting geometric mean rules for calculating interactions between unlike molecules from those between the like molecules involved. In this paper some more or less empirical correlations will be evaluated which enable us to calculate the geometric mean rule corrections for dilute (i.e. no correction for non-additivity of intermolecular forces is necessary) systems.

Numerical values of the attraction coefficients  $(k^{\circ}_{11}, k^{\circ}_{22}, \text{ and } k_{12})$  for dispersion forces are published by Dalgarno.<sup>2</sup> The systems are the like and the 28 unlike binary combinations of the noble gases  $\text{He} \rightarrow \text{Xe}$ , hydrogen, nitrogen, and methane. From these data the products  $f_{1} \cdot f_{a}$  are obtained (Ref. 1, eqn. (3)).

Chueh and Prausnitz  $^{3,4}$  have compiled correction factors (which they call 1-k) to the geometric means for critical temperatures. In this way experimental values of  $f_1 \cdot f_{\alpha} \cdot f_{\rm d}^2 \cdot f_{\rm N} \cdot f_{\rm c}$  (Ref. 1, eqn. (27)) are available for 68 nonpolar and weakly polar systems composed of normal and branched alkanes  $(C_1 \rightarrow C_8)$ , cyclohexane, benzene, toluene, naphthalene, noble gases (He  $\rightarrow$  Kr), hydrogen, nitrogen, oxygen, and tetrafluoromethane. Estimated and interpolated values are neglected together with systems involving ethylene, propylene, acetylene, carbon dioxide, and hydrogen sulphide, to ensure that dispersion forces alone are acting.

Acta Chem. Scand. 25 (1971) No. 1

The same unlike critical temperature correction factors (called  $\beta$ ) are determined by Brewer <sup>5</sup> for 35 systems composed of noble gases (Ne $\rightarrow$ Xe), hydrogen, nitrogen, carbon monoxide, methane, propane, and monochloro-difluoromethane (F-22). Here, too, carbon dioxide systems are disregarded.

## The correction factor $f_d$

 $f_{\rm d}$  is defined in Ref. 1, eqn. (12); for  $d_{12}$  is used the arithmetical mean of  $d_{11}^{\rm o}$  and  $d_{22}^{\rm o}$ . These, in turn, are supposed to be proportional to the cube roots of the zero-point volumes,  $v^{\rm o}$ .

## The correction factors $f_N$ and $f_c$

In order to calculate  $f_N$  (Ref. 1, eqn. (13)), values of the repulsive exponents  $(n^0)$  of the Lennard-Jones (6-n) potential functions are needed. Twenty-eight such values are taken from the tables 4-6 and 8-10 of Moelwyn-Hughes.<sup>6</sup> (Carbon, metals, and hydrogen-bonded substances are neglected in establishing eqn. (1).) As  $n^0 > 6$ , and as  $n^0$  is assumed to increase with increasing molecular size, the data suggest

$$n^{\circ} = 6 + 0.145 \cdot v^{\circ} \text{(cm}^{3}/\text{mol)}$$
 (1)

Even though this relationship (and/or the data used) needs more investigation (correlation coefficient = 0.639) it will be used temporarily for the present

purpose.

For the ten systems common to Dalgarno, and to Chueh and Prausnitz, and the twenty-one systems common to Dalgarno, and to Brewer,  $f_1 \cdot f_a$  and  $f_{\rm d}^2$  are eliminated, so that only  $f_{\rm N} \cdot f_{\rm c}$  is left. It is seen from Ref. 1, eqns. (13), (24) – (26), and (28), that  $n_{12}$  is the only unknown quantity. After solving these equations with respect to  $n_{12}$ , the following empirical relationship is established

$$n_{12}^{\rm E} \equiv n_{12} - \frac{1}{2}(n_{11}^{\rm o} + n_{22}^{\rm o}) = \Delta(I) \cdot \Delta(n_{11}^{\rm o}/I)/3 \tag{2}$$

(correlation coefficient = 0.957), where I is the ionisation potential and, e.g.,  $\Delta(n/I) \equiv n^{\circ}_{11}/I_1 - n^{\circ}_{22}/I_2$ .

## The correction factors $f_1$ and $f_{lpha}$

Now the products  $f_1 \cdot f_{\alpha}$  are available, immediately for Dalgarno's systems, but also for Chueh and Prausnitz' and Brewer's systems after eliminating  $f \cdot f$  (with  $n_{co}$  from (2)) and  $f \cdot f$ .

 $f_{\rm N} \cdot f_{\rm c}$  (with  $n_{12}$  from (2)) and  $f_{\rm d}^2$ . From Ref. 1, eqns. (4) and (5), is seen that the unknown quantities are now the polarisability  $(\alpha_1)$  of component 1 interacting with component 2, and

the polarisability  $(\alpha_2)$  of 2 interacting with 1.

Polarisabilities are related to refractive indices through the Lorentz-Lorenz equation, but to avoid defining molal volumes for a pair of isolated molecules, the zero-point volumes will be used and the resulting "refractive indices" denoted  $\eta$ . Thus for the pure substances

$$(\eta^{\circ})^2 = (2P+1)/(1-P); \ P \equiv (4\pi/3) \cdot N_0 \cdot \alpha^{\circ}/v^{\circ}$$
 (3)

Acta Chem. Scand. 25 (1971) No. 1

Using the Lorentz-Lorenz equation simultaneously for  $\alpha^o_{\,i}$  and  $\alpha_i\,$  one has

$$\alpha_{\rm i} = \alpha^{\rm o}_{\rm i} \frac{[\eta_{\rm i}^{\, 2} - 1] \cdot [(\eta^{\rm o}_{\rm i})^2 + 2]}{[(\eta^{\rm o}_{\rm i})^2 - 1] \cdot [\eta_{\rm i}^2 + 2]} \qquad (i = 1, 2)$$
 (4)

Macroscopic excess refractive indices are, to a first approximation and at least better than excess polarisabilities, parabolic and might be represented by  $x_1 \cdot x_2 \cdot constant$ , where x is the mole fraction. When the same approximation is used for  $\eta$ , one has for  $x_1 = x_2 = \frac{1}{2}$  (as interactions between pairs of molecules are considered)

$$\eta_1 = \eta^{\circ}_1 - y \tag{5a}$$

$$\eta_2 = \eta^{\circ}_2 - y \tag{5b}$$

From the known values of  $f_1 \cdot f_{\alpha}$ , y was calculated for each of the 131 systems. It turns out that the following empirical relationship holds

Table 1. The data for the pure substances.

$$y = \Delta(1/U) \cdot \Delta(\eta \cdot U) \cdot [0.0563 - 0.0883 \cdot (|\Delta \kappa|/(\kappa_1 + \kappa_2))^{1/3}]$$
 (6)

|          | ж | $v^{ m o} \  m (cm^3/mol)$               | $ m lpha^o 	imes 10^{24} \ (em^3/mol)$     | (eV)           |  |
|----------|---|------------------------------------------|--------------------------------------------|----------------|--|
| He       | 2 | 20.93 <sup>c</sup>                       | .20364 /                                   | 24.58          |  |
| Ne<br>Ar | 6 | 13.07 <sup>c</sup><br>21.86 <sup>c</sup> | .39256 <sup>†</sup><br>1.6264 <sup>†</sup> | 21.559 $15.75$ |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               | $v^{\circ}$        | α <sup>0</sup> × 10 <sup>22</sup> | 1          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|-----------------------------------|------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×               | (cm³/mol)          | (cm³/mol)                         | $(eV)^{d}$ |  |
| He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9               | 20.93 <sup>c</sup> | .20364 *                          | 24.581     |  |
| Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{2}{6}$   | 13.07 <sup>c</sup> | .39256 /                          |            |  |
| Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6               |                    |                                   | 21.559     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | 21.86 °            | 1.6264                            | 15.755     |  |
| Kr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6               | 27.09 °            | 2.4559 /                          | 13.996     |  |
| $\mathbf{X}\mathbf{e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6<br>2<br>6     | 34.71 <sup>c</sup> | 3.9989 /                          | 12.127     |  |
| $\mathbf{H_{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               | $13.4$ $^b$        | .8023 /                           | 15.427     |  |
| $N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6               | $26.2^{a}$         | 1.734                             | 15.60      |  |
| $ \begin{array}{c} O_2\\ CF_4 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8               | 21.8 <sup>a</sup>  | 1.561 /                           | 12.21      |  |
| $\mathbf{CF_4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24              | $42.3$ $^b$        | 4.02 h                            | 17.8       |  |
| $\mathbf{F}$ - $\mathbf{\tilde{22}}$ $^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20              | $45.7^{a}$         | (5.30)                            | (10.8)     |  |
| CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8               | $26.7^{a}$         | 1.926 #                           | 14.01      |  |
| $\mathrm{CH_4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8               | 26.3 a             | 2.699 #                           | 12.99      |  |
| $\mathbf{C_2}\mathbf{H_6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14              | $41.2^{a}$         | 4.326 /                           | 11.65      |  |
| $\mathrm{C_3H_8}^{\circ}$<br>$\mathrm{n\text{-}C_4H_{10}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20              | $56.2^{-a}$        | 6.31 i                            | 11.21      |  |
| n-C.H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26              | $71.2^{-a}$        | 8.30 i                            | 10.80      |  |
| $i-C_4H_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26              | $71.2^{-l}$        | 8.27 i                            | 10.79      |  |
| $n-C_5H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\overline{32}$ | 86.1 a             | 10.00                             | 10.55      |  |
| $i-C_5H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32              | 86.1 1             | 10.03 j                           | 10.60      |  |
| $n-C_6H_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38              | 101.1 a            | 11.81                             | 10.48      |  |
| $n-C_7H_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44              | 116.1 a            | 13.69                             | 10.35      |  |
| $n-C_8H_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50              | 131.0 a            | 15.50 i                           | 10.24      |  |
| $c-C_6H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36              | 86.2 a             |                                   | 9.88       |  |
| $C_6H_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30              | 71.3 b             | 10.98 g<br>9.89 f                 | 9.21       |  |
| $\overset{\mathbf{C_{6}H_{5}^{6}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}{\overset{\mathbf{CH_{3}}}}{\overset{\mathbf{C}}{\overset{\mathbf{C}}}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}}}{\overset{\mathbf{C}}}}{\overset{\mathbf{C}}}{\overset{\mathbf{C}}}}}}}}}}$ | 36              | 85.9 b             | 12.33 $i$                         | 8.82       |  |
| O TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48              | 105.8 b            |                                   |            |  |
| $\mathbf{C_{10}H_8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.8             | 109.6              | 17.58 <sup>k</sup>                | 8.12       |  |

<sup>&</sup>lt;sup>a</sup> Sugden,<sup>7</sup> eqn. (4). <sup>b</sup> Sugden <sup>8</sup> from atomic and structural constants. <sup>c</sup> Grosse, <sup>e</sup> d' Vedeneyev et al. <sup>10</sup> Estimated values. <sup>f</sup> Moelwyn-Hughes, <sup>e</sup> p. 383. <sup>g</sup> Unpublished, result. <sup>h</sup> Watson et al. <sup>11</sup> Landolt-Börnstein. <sup>f</sup> Selected values. <sup>12</sup> <sup>k</sup> Selected values. <sup>13</sup> <sup>l</sup> The values for the corresponding n-alkanes are used. \*\* F-22 is CHClF2.

Acta Chem. Scand. 25 (1971) No. 1

where  $U = I \cdot \sqrt{\kappa}$ , and  $\kappa$  is the number of electrons in the outer shells. The correlation coefficient is 0.615, but as y always appears together with  $\eta^{\circ}$ , eqn. (5), the precision of  $\eta$  is about  $\pm 1$  %.

#### AGREEMENTS AND COMMENTS

Using the data of Table 1,  $f_1 \cdot f_\alpha$  are calculated for the Dalgarno systems, and  $f_1 \cdot f_\alpha \cdot f_{\rm d}^2 \cdot f_{\rm N} \cdot f_{\rm c}$  for Chueh and Prausnitz' and for Brewer's systems. The agreements are shown on Figs. 1-3.

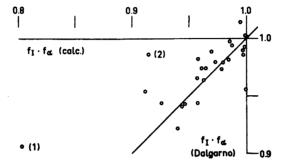



Fig. 1. Calculated correction factors to the geometric mean rule for dispersion forces compared to the data of Dalgarno.<sup>2</sup> (1):  $H_2 + Ne$ ; (2): He + Ne.

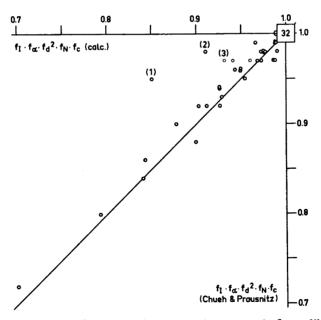



Fig. 2. Calculated correction factors to the geometric mean rule for unlike critical temperatures compared to the data of Chueh and Prausnitz.<sup>3,4</sup> (1): He+Ar; (2):  $CF_4+N_2$ ; (3):  $H_2+CH_4$ . 32 points appear in the upper right square.

Acta Chem. Scand. 25 (1971) No. 1

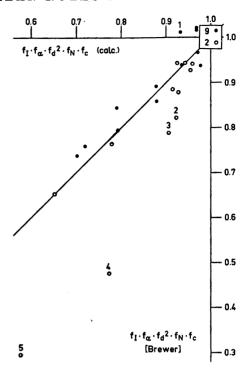



Fig. 3. Calculated correction factors to the geometric mean rule for unlike critical temperatures compared to the data of Brewer. (1): H₂+CH₄; (2): F-22+N₂; (3): F-22+Ar; (4): F-22+H₂; (5): C₃H₃+Ne. Systems with one or two of the gases Xe, F-22, and C₃H₃ (see text) are indicated by O. 9 (●)+2 (O) points appear in the upper right square.

Table 2. Correlation coefficients for f[total] (Dalgarno, Chueh and Prausnitz, or Brewer) taken together with f[total](calc.) and with f[total](calc.), divided by each of the f-factors in turn.

| Authors                                    | Excluded systems<br>(see text)                                                                                                            | No.<br>of<br>sys-<br>tems | Correlation coefficients for $f[\text{total}]$ (D, CP or B) taken together with |                             |            |                  |            |            |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------|-----------------------------|------------|------------------|------------|------------|
|                                            |                                                                                                                                           |                           | f[total]<br>(calc.)                                                             | f[total] (calc.) divided by |            |                  |            |            |
|                                            |                                                                                                                                           |                           |                                                                                 | $f_1$                       | $f_{lpha}$ | $f_{ m d}{}^{2}$ | $f_{ m N}$ | $f_{ m c}$ |
| Dalgarno <sup>a</sup>                      | $He+H_2$                                                                                                                                  | 27                        | 0.744                                                                           | 0.027                       | 0.636      | _                | _          |            |
| Chueh and<br>Prausnitz <sup>b</sup>        | C <sub>2</sub> H <sub>4</sub> , C <sub>3</sub> H <sub>6</sub> , C <sub>2</sub> H <sub>2</sub> ,<br>CO <sub>2</sub> , and H <sub>2</sub> S | 68                        | 0.954                                                                           | 0.903                       | 0.938      | 0.675            | 0.468      | 0.952      |
| Brewer <sup>c</sup><br>Brewer <sup>c</sup> | $\begin{array}{c} \mathrm{CO_2} \\ \mathrm{CO_2}, \mathrm{Xe}, \mathrm{F-22} \end{array}$                                                 | 35                        | 0.890                                                                           | 0.906                       | 0.771      | 0.801            | 0.571      | 0.892      |
|                                            | and $C_3H_8$                                                                                                                              | 21                        | 0.952                                                                           | 0.873                       | 0.931      | 0.959            | 0.469      | 0.957      |

<sup>&</sup>lt;sup>a</sup> Ref. 2. <sup>b</sup> Refs. 3-4. <sup>c</sup> Ref. 5.

The most serious disagreement occurs for  $\text{He} + \text{H}_2$  ( $f_1 \cdot f_\alpha$ : Dalgarno: 0.94 and calc.=1.15). The reason might be "quantum effects". This system is excluded from Fig. 1 and from the correlation coefficients.

The standard deviation for Dalgarno's systems is 2.9 %. This is the same order of magnitude as claimed by Dalgarno: "With the possible exception of interactions involving Xe, in no case should the error exceed 10 % and it is usually much smaller."

Chueh and Prausnitz report their data (converted to f) with two significant figures, e.g., f = 0.98, so that the precision is about  $\pm 0.01$ . This is in agreement with the standard deviation found (0.018).

The standard deviation of Brewer's systems is 0.043, calculated from his data, compared to 0.080 for the theory presented here. The standard deviation of Brewer reflects, however, only his reproducibility and curve fitting. Systematic errors caused by solubility of Xe, F-22, and C<sub>3</sub>H<sub>8</sub> in particular in the manometer oil are stressed by Brewer. When the systems involving one or more of these three gases are excluded, the standard deviations are in better agreement: 0.024 (Brewer) and 0.031 (this work).

On the whole it appears possible, with the theory presented here, to account for corrections to the geometric mean rule with almost the same precision as

the original data.

To examine the possibility that one of the correction factors could in general be so close to one that it can be safely ignored, correlation coefficients were calculated with one of the correction factors removed in turn from the calculated f(total). It is seen from Table 2 that only  $f_{\rm c}$  can be ignored, but even in this case  $\Delta(I)$  must not be too large. For Ne+CH<sub>4</sub>, for example,  $\Delta(I) = 8.6$ , f[total] = 0.72 (Chueh and Prausnitz), and = 0.70 (calc.), but  $f[\text{total}]/f_c = 0.65$ . In general,  $f_c^{-1}$  increases approximately proportional to  $(|\Delta I|)^3$ .

### REFERENCES

- 1. Thomsen, E. S. Acta Chem. Scand. 25 (1971) 260.
- 2. Dalgarno, A. Advan. Chem. Phys. 12 (1967) 143.

- Chueh, P. L. and Prausnitz, J. M. Ind. Eng. Chem. (Fundamentals) 6 (1967) 492.
   Prausnitz, J. M. Advan. Chem. Eng. 7 (1968) 139.
   Brewer, J. Determination of Mixed Virial Coefficients, MRL 2915-C, 1967, (microfiche AD 663 448).
- 6. Moelwyn-Hughes, E. A. Physical Chemistry, 2nd Ed., Macmillan, New York 1964.

- Sugden, S. J. Chem. Soc. 1927 1780.
   Sugden, S. J. Chem. Soc. 1927 1786.
   Grosse, A. V. J. Inorg. Nucl. Chem. 26 (1964) 1801.
   Vedeneyev, V. I., Gurvich, L. V., Kondrat'yev, V. N., Medvedev, V. A. and Frankevich, Y. L. Bond Energies, Ionization Potentials, and Electron Affinities, Edward Arnold Publ., London 1966.
- 11. Watson, H. E., Ramaswamy, K. L. and Kane, G. P. Proc. Roy. Soc. (London) A 156 (1936) 130.
- 12. National Bureau of Standards, Selected Values of Properties of Hydrocarbons, C 461, Washington 1947.
- 13. American Petroleum Institute, Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds, Research Project 44, Carnegie Press, Pittsburg 1953.

Received May 25, 1970.